skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Turcotte, Jérémie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present progress on three old conjectures about longest paths and cycles in graphs. The first pair of conjectures, due to Lovász from 1969 and Thomassen from 1978, respectively, states that all connected vertex‐transitive graphs contain a Hamiltonian path, and that all sufficiently large such graphs even contain a Hamiltonian cycle. The third conjecture, due to Smith from 1984, states that for in every ‐connected graph any two longest cycles intersect in at least vertices. In this paper, we prove a new lemma about the intersection of longest cycles in a graph, which can be used to improve the best known bounds toward all the aforementioned conjectures: First, we show that every connected vertex‐transitive graph on vertices contains a cycle (and hence path) of length at least , improving on from DeVos [arXiv:2302:04255, 2023]. Second, we show that in every ‐connected graph with , any two longest cycles meet in at least vertices, improving on from Chen, Faudree, and Gould [J. Combin. Theory, Ser. B,72(1998) no. 1, 143–149]. Our proof combines combinatorial arguments, computer search, and linear programming. 
    more » « less
  2. We prove that every connected P5-free graph has cop number at most two, solving a conjecture of Sivaraman. In order to do so, we first prove that every connected P5-free graph G with independence number at least three contains a three-vertex induced path with vertices a-b-c in order, such that every neighbor of c is also adjacent to one of a,b. 
    more » « less